Fraunhofer Institute for Secure Information Technology SIT

Masterarbeit: Faire und ausbalancierte Altersschätzung durch dynamisches, gruppenweises Training

Stellenbeschreibung:

Hintergrund/Motivation

Gesichtbasierte Altersschätzung ist in vielen Anwendungen zentral, wie z. B. in der Kriminalitätsbekämpfung, Identitätsverifizierung, Jugendschutz und auch im medizinischen Bereich. Systeme zur Altersschätzung zeigen häufig unterschiedliche Performance auf Subgruppen (z. B. bzgl. Alter, Geschlecht, ethnische Zugehörigkeit). Gründe sind auf der einen Seite die Verfügbarkeit bzw. Ausgewogenheit der Trainingsdaten und auf der anderen Seite klassische Trainingsverfahren, die globale Metriken optimieren und Probleme in gewissen Subgruppen ignorieren.
Techniken wie Oversampling oder probabilistisches Sampling versuchen durch eine statistische Analyse im Vorhinein eine Balanciertheit der Trainingsdaten zu erzeugen mit der Hoffnung, dass dies eine gleichmäßige Performance auf allen Subgruppen erzeugt. Das Ergebnis der Maßnahme fließt jedoch üblicherweise nicht zurück in den Trainingsprozess, dieser bleibt davon unberührt.

Ziel

Ziel dieser Masterarbeit ist die Entwicklung und systematische Evaluation von Trainingstrategien, die dynamisch zur Laufzeit abhängig von der momentanen Performance auf den Subgruppen den Trainingsprozess anpassen.

Dazu sollen

  • während des Trainings subgruppen-spezifische Metriken berechnet und zur Steuerung genutzt werden.
  • Strategien entwickelt und implementiert werden: dynamisches Oversampling schwacher Subgruppen, Sampling nach Unsicherheit (uncertainty sampling), sowie Curriculum‑Strategien (zuerst allgemein/leicht, dann spezifisch/schwer).
  • geeignete Aggregationsmetriken über die Subgruppen untersucht werden (z. B. Worst‑Group‑Performance, harmonisches Mittel, Quantile statt Macro‑Average).
  • Vergleiche mit Baselines wie klassischem Oversampling, probabilistischem Sampling, GroupDRO (1) und JTT (2) durchgeführt werden.
  • AutoML/Hyperparameter‑Suche zur Exploration von Kombinationsmöglichkeiten eingesetzt werden.

Ergebnisse

Die entwickelten Verfahren sollen es erlauben, ausgeglichene, aber auch spezialisierte Computer‑Vision‑Modelle zu trainieren, insbesondere im Bereich der gesichtsbasierten Altersschätzung. Es werden geeignete und erfolgreiche Maßnahmen präsentiert, Leitlinien, wann welche Strategie (oder Kombination) wirkt, aber auch Einschränkungen, Fallstricke und unerwartete Ergebnisse. Die Verfahren werden anhand von frei verfügbaren Benchmark‑Datensätzen evaluiert und mit existierenden Verfahren verglichen. Der verwendete Code ist gut dokumentiert, wiederverwendbar und die Ergebnisse sind reproduzierbar.

Hier sorgst Du für Veränderung

  • Recherchieren und Zusammenstellen von Informationen zu einem aktuellen Thema aus dem Bereich maschinelles Lernen.
  • Forschen und Implementieren von neuartigen Machine‑Learning‑ und Computer‑Vision‑Ansätzen.
  • Selbstkritische Evaluierung der gefundenen Ergebnisse.
  • Präsentieren der Ergebnisse.
  • Anfertigen einer wissenschaftlichen Arbeit in Form einer Masterarbeit mit den Ergebnissen.

Hiermit bringst Du Dich ein

  • Gute Kenntnisse im Bereich Machine Learning und dem Training neuronaler Netze.
  • Idealerweise Kenntnisse in Computer‑Vision und Gesichtserkennung.
  • Gute Python‑Kenntnisse, vorzugsweise erste Erfahrung mit PyTorch, OpenCV etc.
  • Motivation, sich eigenständig in neue und aktuelle Forschungsthemen einzuarbeiten.
  • Interesse an Robustheit und Evaluationsmetriken.
  • Interesse an wissenschaftlicher Forschung.

Was wir für Dich bereithalten

  • Selbstständige Arbeitszeiteinteilung
  • Einblicke in das Schnittfeld von akademischer Forschung und industrieller Anwendung

Verwandte Arbeiten

(1) Sagawa et al., Distributionally Robust Neural Networks for Group Shifts (GroupDRO) Liu et al., Just Train Twice: Improving Group Robustness Without Training Group Information (JTT) Hacohen, Weinshall (2019). On the Power of Curriculum Learning in Training Deep Networks Roh et al., FairBatch: Batch Selection for Model Fairness — Ren et al., Learning to Reweight Examples for Robust Deep Learning — Cui et al., Class‑Balanced Loss Based on Effective Number of Samples — Hashimoto et al., Fairness Without Demographics in Repeated Loss Minimization —

Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt. Unsere Aufgaben sind vielfältig und anpassbar – für Bewerber*innen mit Behinderung finden wir gemeinsam Lösungen, die ihre Fähigkeiten optimal fördern.

Fraunhofer‑Institut für Sichere Informationstechnologie SIT
82685 Bewerbungsfrist:

Bereit für Veränderung? Dann bewirb Dich jetzt, und mach einen Unterschied! Nach Eingang Deiner Online‑Bewerbung erhältst Du eine automatische Empfangsbestätigung. Dann melden wir uns schnellstmöglich und sagen Dir, wie es weitergeht.

#J-18808-Ljbffr
NOTE / HINWEIS:
EnglishEN: Please refer to Fuchsjobs for the source of your application
DeutschDE: Bitte erwähne Fuchsjobs, als Quelle Deiner Bewerbung

Stelleninformationen

  • Veröffentlichungsdatum:

    23 Jan 2026
  • Standort:

    Darmstadt
  • Typ:

    Vollzeit
  • Arbeitsmodell:

    Vor Ort
  • Kategorie:

  • Erfahrung:

    2+ years
  • Arbeitsverhältnis:

    Angestellt

KI Suchagent

AI job search

Möchtest über ähnliche Jobs informiert werden? Dann beauftrage jetzt den Fuchsjobs KI Suchagenten!

Diese Jobs passen zu Deiner Suche:

company logo
Elektroniker:in (m/w/d) für Informations- und Telekommunikationstechnik (NE4)
Wirtschaftsbetriebe Neustadt am Rübenberge GmbH c/o Ideenstadtwerke
Vollzeit Neustadt am Rübenberge
23 Jan 2026Development & IT
cellcentric GmbH & Co. KG
Product Owner / Full-Stack-Entwickler (m/w/d) Steuerungssoftware für Produktions- und Prüfanlagen
cellcentric GmbH & Co. KG
partner ad:img
Vollzeit Kirchheim/Teck - Nabern
03 Feb 2026Development & IT
Dr. Meyer & Meyer-Peteaux New Media Company GmbH & Co. KG
Webentwickler - Frontend / UX Design / APIs / Performance (m/w/d)
Dr. Meyer & Meyer-Peteaux New Media Company GmbH & Co. KG
partner ad:img
Vollzeit Rastede
03 Feb 2026Development & IT
RAGOLDS Management Service GmbH
IT System- und Netzwerkadministrator (m/w/d)
RAGOLDS Management Service GmbH
partner ad:img
Vollzeit Boizenburg bei Hamburg
03 Feb 2026Development & IT
ALH Gruppe
IT-Service- und Prozess-Manager (m/w/d)*
ALH Gruppe
partner ad:img
Vollzeit Oberursel bei Frankfurt am Main
03 Feb 2026Development & IT
ElringKlinger AG
DHBW-Student Wirtschaftsinformatik (m/w/d) | Ausbildungsbeginn: 01.09.2026
ElringKlinger AG
partner ad:img
Vollzeit Dettingen an der Erms
03 Feb 2026Development & IT
THOST Projektmanagement GmbH
Consultant für IT- / KI-Projekte und digitale Transformation (m/w/d) Schwerpunkte IT und KI in Industrie und Engineering
THOST Projektmanagement GmbH
partner ad:img
Vollzeit Frankfurt am Main
03 Feb 2026Development & IT
Zentralrat der Juden In Deutschland K.d.ö.R.
IT-Systemadministrator (Fachinformatiker) (m/w/d)
Zentralrat der Juden In Deutschland K.d.ö.R.
partner ad:img
Vollzeit Heidelberg
03 Feb 2026Development & IT